Condensation Reaction of 5, 6-Dihydro-6-methyl-6-piperonyl-2*H*-pyran-2, 4-dione, Ethyl Orthoformate and Substituted Anilines

You Ming WANG*, Ke HE, Guo Feng ZHAO, Zheng Ming LI

State Key Lab of Elemento-Organic Chemistry, Nankai University, Tianjin 300071

Abstract: Piperonyl methyl ketone was obtained by oxidizing isosafrole with hydrogen peroxide and formic acid. Dianion of ethyl acetoacetate reacted with piperonyl methyl ketone and 5, 6-dihydro-6-methyl-6-piperonyl-2*H*-pyran-2, 4-dione was prepared, which reacted with substituted anilines in the presence of ethyl orthoformate to obtain 3-anilinomethylene-5, 6- dihydro-6-methyl-6-piperonyl-2*H*-pyran-2, 4-diones. Their structures were confirmed by ¹HNMR and elemental analysis.

Keywords: Piperonyl methyl ketone, isosafrole, dianion.

5,6-Dihydro-pyran-2,4-dione derivatives have interesting biological activities. Two American companies (Pharmacia & Upjohn, Park-Davis Division of Warner-Lambert) had reported 5,6-dihydro-2*H*-pyran-2,4-dione derivatives have good inhibitory activity of HIV proteases¹⁻³. Recently we have reported 3-anilinomethylene-5, 6-dihydro-6-alkyl(aryl)-2*H*-pyran-2,4-dione derivatives have interesting fungicidal, tobacco virucidal activities⁴⁻⁵. The results led us to study the biological activities of different 5, 6-dihydro-2*H*-pyran-2, 4-dione derivatives. We reacted 5, 6-dihydro-6-methyl-6-piperonyl-2*H*-pyran-2, 4-dione which was obtained by reacting dianion of ethyl acetoacetate with piperonyl methyl ketone with substituted anilines in the presence of ethyl orthoformate and new condensation products **3** were obtained.

In a general procedure, isosafrole was added dropwise to a solution of hydrogen peroxide and formic acid in the presence of 1,2-dichloroethane at 40-45°C. After the addition, the mixture was continued to stir for 2h, the organic phase was separated from the solution and the solution was extracted two times with 1,2-dichloroethane. The solvent was evaporated under the reduced pressure. The crude product was hydrolyzed with 15% diluted sulfuric acid for 3h and piperonyl methyl ketone was obtained. Dianion of ethyl acetoacetate, which was obtained by reacted ethyl acetoacetate with NaH and ⁿBuLi, reacted with piperonyl methyl ketone in the presence of absolute anhydrous THF for 6h at 0°C, and the slurry was poured into ice-cooled water. The solution was allowed to stir overnight and acidified with 5% diluted hydrochloride to obtain 5,6-dihydro-6-methyl-6-piperonyl-2*H*-pyran-2,4-dione. We reacted 5,6-

^{*}E-mail: youmingwang@hotmail.com

dihydro-6-methyl-6-piperonyl-2*H*-pyran-2,4-dione(1) with substituted anilines(2) in the presence of ethyl orthoformate at 85-90°C and the products **3** were obtained. The products **3** were purified by silica gel column or recrystallization (**Table 1**). Their structures were confirmed by ¹HNMR (**Table 2**) spectra and elemental analysis (**Table 1**).

The products **3** that were confirmed by ¹HNMR spectra, are composed of a pair of isomers **Z** and **E**, probably due to intramolecular hydrogen bonds. The chemical shifts of hydrogen on nitrogen atom and carbon-carbon double bond of **Z** lie in lower field because of the electron-withdrawing effect of oxygen atom.

Z-Form

Compound	Xn	Yield (%)	m.p(°C)	Elemental analysis(%, Cacl.)		
				С	Н	Ν
а	4-CH ₃	74.9	149-151	69.64(69.66)	5.27(5.54)	4.03(3.69)
b	4-C1	70.2	182-184	62.96(63.08)	4.52(4.51)	3.35(3.50)
с	4-Br	80.1	189-191	56.67(56.76)	4.16(4.05)	3.10(3.15)
d	Н	66.4	173-175	68.83(69.04)	5.25(5.21)	3.83(3.84)
е	3,4-Cl ₂	75.7	148-150	57.90(58.06)	3.94(3.92)	3.15(3.23)
f	2,5,6-Cl ₃	79.6	198-200	53.76(53.79)	3.38(3.42)	2.70(2.99)
g	2-CH ₃	64.3	117-119	69.65(69.66)	5.65(5.54)	3.68(3.69)
h	2-Br	82.7	157-159	56.93(56.76)	3.91(4.05)	2.93(3.15)
i	4-OCH ₃	78.8	156-157	66.72(66.84)	5.19(5.32)	3.76(3.54)
j	2-OCH ₃	68.7	168-170	66.77(68.84)	5.27(5.32)	3.60(3.54)
k	2-CH ₃ -4-Cl	71.5	163-165	63.66(63.85)	5.12(4.84)	3.38(3.39)
1	2,6-(CH ₃) ₂	67.8	Oil	70.32(70.23)	5.51(5.85)	3.33(3.56)
m	2-CH ₃ -6-C ₂	62.6	Oil	70.60(70.76)	5.99(6.14)	3.35(3.44)
	H_5					

Condensation Reaction of 5, 6-Dihydro-6-methyl-6-piperonyl-2H- pyran-2, 223 4-dione, Ethyl Orthoformate and Substituted Anilines

Table1Prepared data and elemental analysis data of 3-anilinomethylene-5,6-dihydro-6-
methyl-6-piperonyl-2H-pyran-2,4-diones 3

Table 2¹HNMR data of 3-anilinomethylene-5,6-dihydro-6-methyl-6- piperonyl-2H-pyran-2,
4-diones 3

compound	¹ HNMR, δ , J _{H-H} /Hz					
î						
а	1.43(s, 3H), 2.34(s, 3H), 2.80(m, 4H), 5.89(s, 2H), 6.71(m, 3H), 7.19(m, 4H), 8.52(dd, 1H,					
,	J=12.0, 11.45(d, J=14.0), 12.45(d, J=14.0)					
b	1.42(s, 3H), 2.74(m, 4H), 5.89(s, 2H), 6.70(m, 3H), 7.19(m, 4H), 8.51(dd, 1H, J=12.8),					
	11.45(d, J=14.0), 12.45(d, J=14.0)					
с	1.42(s, 3H), 2.88(m, 4H), 5.90(s, 2H), 6.75(m, 3H), 7.20(m, 4H), 8.49(dd, 1H, J=11.4),					
_	11.44(d, J=14.6), 12.43(d, J=14.6)					
d	1.43(s, 3H), 2.70(m, 4H), 5.90(s, 2H), 6.71(m, 3H), 7.24(m, 5H), 8.55(dd, 1H, J=11.4),					
	11.49(d, J=12.6), 12.45(d, J=12.6)					
e	1.46(s, 3H), 2.91(m, 4H), 5.93(s, 2H), 6.73(m, 3H), 7.37(m, 3H), 8.42(dd, 1H, J=10.8),					
	11.41(d, J=13.6), 12.39(d, J=13.6)					
f	1.44(s, 3H), 2.70(m, 4H), 5.88(s, 2H), 6.70(m, 3H), 7.53(m, 3H), 8.42(dd, 1H, J=10.4),					
	11.82(d, J=12.6), 12.68(d, J=12.6)					
g	1.43(s, 3H), 2.39(s, 3H), 2.78(m, 4H), 5.86(s, 2H), 6.70(m, 3H), 7.23(m, 4H), 8.56(dd, 1H,					
	J=10.8), 11.71(d, J=13.6), 12.45(d, J=13.6)					
h	1.43(s, 3H), 2.88(m, 4H), 5.87(s, 2H), 6.72(m, 3H), 7.35(m, 4H), 8.52(dd, 1H, J=10.8),					
	11.88(d, J=14.6), 12.76(d, J=14.6)					
i	1.42(s, 3H), 2.87(m, 4H), 3.79(s, 3H), 5.88(s, 2H), 6.70(m, 3H), 7.10(m, 4H), 8.45(dd, 1H,					
	J=12.6), 11.47(d, J=14.6), 12.48(d, J=14.6)					
j	1.42(s, 3H), 2.77(m, 4H), 3.95(s, 3H), 5.88(s, 2H), 6.70(m, 3H), 7.10(m, 4H), 8.59(dd, 1H,					
-	J=12.6), 11.79(d, J=14.6), 12.66(d, J=14.6)					
k	1.43(s, 3H), 2.36(s, 3H), 2.88(m, 4H), 5.85(s, 2H), 6.70(m, 3H), 7.22(m, 4H), 8.48(dd, 1H,					
	J=12.0), 11.66(d, J=14.0), 12.63(d, J=14.0)					
1	1.43(s, 3H), 2.41(s, 6H), 2.76(m, 4H), 5.99(s, 2H), 6.77(m, 3H), 7.20(m, 3H), 8.10(dd, 1H,					
	J=11.6), 11.01(d, J=14.0), 11.98(d, J=14.0)					
m	1.13(m, 5H), 1.31(s, 3H), 2.54(m, 4H), 5.96(s, 2H), 6.76(m, 3H), 7.18(m, 3H), 7.85(dd, 1H, J=					
	11.6), 10.91(d, 14.6), 11.82(d, J=14.6)					

You Ming WANG et al.

References

- S. Thaisrivongs, C. P. Yang *et al.*, WO patent 11361.
 E. L. Ellsworch, E. Lunney *et al.*, WO paten 14011.
 B. D. Tait, S. Hagen *et al.*, *J. Med. Chem.*, **1997**, *40*, 3781.
 Y. M. Wang, Z. M. Li *et al.*, *Chem. J. Chinese Univ.*, **1999**, *20* (5), 1559.
 Y. M. Wang, Z. M. Li *et al.*, *J. Applied Chem.*, **2001**, *12* (6), 475.

Received 25 March, 2002